Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling
نویسندگان
چکیده
The first point of our body's contact with tactile stimuli (innocuous and noxious) is the epidermis, the outermost layer of skin that is largely composed of keratinocytes. Here, we sought to define the role that keratinocytes play in touch sensation in vivo and ex vivo. We show that optogenetic inhibition of keratinocytes decreases behavioral and cellular mechanosensitivity. These processes are inherently mediated by ATP signaling, as demonstrated by complementary cutaneous ATP release and degradation experiments. Specific deletion of P2X4 receptors in sensory neurons markedly decreases behavioral and primary afferent mechanical sensitivity, thus positioning keratinocyte-released ATP to sensory neuron P2X4 signaling as a critical component of baseline mammalian tactile sensation. These experiments lay a vital foundation for subsequent studies into the dysfunctional signaling that occurs in cutaneous pain and itch disorders, and ultimately, the development of novel topical therapeutics for these conditions.
منابع مشابه
[Blood flow sensing mechanism via calcium signaling in vascular endothelium].
The structure and function of blood vessels adapt to environmental changes, for example, physical development and exercise. This phenomenon is based on the ability of endothelial cells (ECs) to sense and respond to blood flow. ECs are in direct contact with blood flow and exposed to shear stress. A number of recent studies have revealed that ECs recognize changes in shear stress and transmit si...
متن کاملAntidepressants inhibit P2X4 receptor function: a possible involvement in neuropathic pain relief
BACKGROUND Neuropathic pain is characterized by pain hypersensitivity to innocuous stimuli (tactile allodynia) that is nearly always resistant to known treatments such as non-steroidal anti-inflammatory drugs or even opioids. It has been reported that some antidepressants are effective for treating neuropathic pain. However, the underlying molecular mechanisms are not well understood. We have r...
متن کاملSensory and Motor Systems Mapping Cortical Responses to Somatosensory Stimuli in Human Infants with Simultaneous Near-Infrared Spectroscopy and Event-Related Potential Recording
Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) have recently provided fundamental new information about how the newborn brain processes innocuous and noxious somatosensory information. However, results derived independently from these two techniques are not entirely consistent, raising questions about the relationship between hemodynamic and electrophysiological responses in...
متن کاملMapping Cortical Responses to Somatosensory Stimuli in Human Infants with Simultaneous Near-Infrared Spectroscopy and Event-Related Potential Recording123
Near-infrared spectroscopy (NIRS) and electroencephalography (EEG) have recently provided fundamental new information about how the newborn brain processes innocuous and noxious somatosensory information. However, results derived independently from these two techniques are not entirely consistent, raising questions about the relationship between hemodynamic and electrophysiological responses in...
متن کاملFluid shear stress activates Ca(2+) influx into human endothelial cells via P2X4 purinoceptors.
Ca(2+) signaling plays an important role in endothelial cell (EC) responses to shear stress generated by blood flow. Our previous studies demonstrated that bovine fetal aortic ECs showed a shear stress-dependent Ca(2+) influx when exposed to flow in the presence of extracellular ATP. However, the molecular mechanisms of this process, including the ion channels responsible for the Ca(2+) respons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2018